A Notch and Su(H) dependent enhancer complex coordinates expression of nab in Drosophila
نویسندگان
چکیده
ABTRACT The transcription factor Suppressor of Hairless and its co-activator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally-bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signaling, and the pQ-deficient tissue selectors Apterous (Ap), Scalloped (Sd), and Vestigial (Vg). We find that the densest such binding site cluster in the genome is located in the BMP-inducible nab locus, a homolog of the vertebrate transcriptional co-factors NAB1/NAB2. We report three major findings. First, we find that this nab regulatory belt is a novel enhancer driving dorsal wing margin expression in regions of peak phosphorylated-Mad in wing imaginal discs. Second, we show that Ap is developmentally required to license the nab dorsal wing margin enhancer (DWME) to read-out Notch signaling in the dorsal wing compartment. Third, we find that the nab DWME is embedded in a complex of intronic enhancers, including a wing quadrant enhancer, a proximal wing disc enhancer, and a larval brain enhancer. This enhancer complex coordinates global nab expression via both tissue-specific activation and inter-enhancer silencing. We suggest that DWME integration of BMP signaling maintains nab expression in proliferating margin descendants that have divided away from Notch-Delta boundary signaling. As such, uniform expression of genes like nab and vestigial in proliferating compartments would typically require both boundary and non-boundary lineage-specific enhancers.
منابع مشابه
Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila
The transcription factor Suppressor of Hairless and its coactivator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signal...
متن کاملPhylogenetic footprinting analysis in the upstream regulatory regions of the Drosophila enhancer of split genes.
During Drosophila development Suppressor of Hairless [Su(H)]-dependent Notch activation upregulates transcription of the Enhancer of split-Complex [E(spl)-C] genes. Drosophila melanogaster E(spl) genes share common transcription regulators including binding sites for Su(H), proneural, and E(spl) basic-helix-loop-helix (bHLH) proteins. However, the expression patterns of E(spl) genes during deve...
متن کاملNotch Activation of yan Expression Is Antagonized by RTK/Pointed Signaling in the Drosophila Eye
Receptor tyrosine kinase (RTK) signaling plays an instructive role in cell fate decisions, whereas Notch signaling is often involved in restricting cellular competence for differentiation. Genetic interactions between these two evolutionarily conserved pathways have been extensively documented. The underlying molecular mechanisms, however, are not well understood. Here, we show that Yan, an Ets...
متن کاملThe Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis.
The X-Notch-1 receptor, and its putative ligand, X-Delta-1, are thought to mediate an inhibitory cell-cell interaction, called lateral inhibition, that limits the number of primary neurons that form in Xenopus embryos. The expression of Xenopus ESR-1, a gene related to Drosophila Enhancer of split, appears to be induced by Notch signaling during this process. To determine how the activation of ...
متن کاملA human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters.
Mastermind (Mam) has been implicated as an important positive regulator of the Notch signaling pathway by genetic studies using Drosophila melanogaster. Here we describe a biochemical mechanism of action of Mam within the Notch signaling pathway. Expression of a human sequence related to Drosophila Mam (hMam-1) in mammalian cells augments induction of Hairy Enhancer of split (HES) promoters by ...
متن کامل